MSc Finance

Imperial College Business School
Posted on:


Master's programs

Tailor your learning with electives

Tailor your learning to meet your career ambitions and match your interests through a choice of electives. You will take four electives (if you undertake the Applied Project), or three electives (if you undertake the Research Project), from the following elective modules. All students are required to take at least one key elective.

Administrative label

Advanced Corporate Finance

This elective will develop the ideas introduced in the earlier core module Corporate Finance. Particular emphasis will be placed on linking the conceptual tools taught earlier to real business decisions through the use of case studies.

Applied Trading Strategies

This module provides insight into financial trading strategies from an industry practitioner’s perspective. The module covers the wide spectrum of strategies across asset classes and hedge fund styles with an emphasis on investment /arbitrage opportunity and risk management. The module also includes quantitative pricing models with backtesting in Python across different market regimes. The module aims to study trading strategies in a non-technical intuitive manner using a “first principles” approach.

Advanced Options Theory

If you aspire to be a quantitative analyst in the equity derivative area, this elective is a must. It will challenge you to expand your knowledge beyond the Black-Scholes model and apply quantitative tools to the pricing of exotic options. The elective also introduces some of the more technical and theoretical aspects of option pricing.

Asset Allocation and Investment Strategies

This is an advanced elective in investments and portfolio management. You will discuss the key trading strategies used by hedge funds and demystify the secret world of active investing. The elective combines the latest research with real-world examples and explores several different strategies in depth, including fundamental tools for investment management, dynamic portfolio choice, equity strategies, macro strategies, yield curve logic and arbitrage strategies.

Banks, Regulation & Monetary Policy

In this elective you will analyse banks’ main risks and activities on both their assets and liabilities, including off-balance sheet risks and financial globalisation, with special emphasis on the effects and implications of bank regulation and monetary policy. You will also study issues such as the determinants and consequences of financial crises and come to understand interactions between financial globalisation and banks.

Credit Risk

This elective provides you with a broad perspective of credit risk. You will study how to assess credit risk associated with individual exposures, and discuss major literature in the field and some related applications. The elective also covers aspects of univariate or single-exposure risk and investigates the pricing of defaultable bonds and single named credit derivatives.

Fixed Income Securities

Fixed income securities make up a very substantial proportion of all investments and financing strategies in today’s financial markets. The need to price and hedge this array of products accurately has led to a prolific literature in the area. This elective covers the main continuous-time term structure models and valuation techniques.

Macroeconomics and Finance for Practitioners (international elective)

This international elective allows you to experience finance in a different economy. It is taught in two parts with the first part delivered online and the second part is an international study trip. Traditional lectures will be complemented by guest speakers, company visits and experiential learning activities. The class of 2017-18 travelled to Dubai for an intensive study experience in the capital of an emerging economy.

There will be an additional cost for taking this elective, which is reviewed on an annual basis.

Introduction to Quantitative Investing (international elective)

This elective offers an introduction to analytical techniques and quantitative methods relevant for algorithmic trading. Topics include the basics of automated execution, pairs trading and long-short equity trading strategies. The elective is taught in two parts with the first part delivered online and the second part is an international study trip. Traditional lectures are complemented by guest speakers, company visits and experiential learning activities. The class of 2017-18  travelled to New York for an intensive study experience.

There will be an additional cost for taking this elective, which is reviewed on an annual basis.

Other electives

Advanced Company Valuation

This elective addresses the value creation process and examines the validity and limits of value creation in the context of corporate restructuring. You will analyse traditional valuation models and combine different pricing frameworks in valuing a number of entities with different investment and financing characteristics.

The elective is highly participative and the extensive use of real-world cases guides you through the theory and application of valuation models highlighting their strengths and weaknesses.

Advanced Financial Statistics

This elective aims to provide students with more advanced tools of time series and econometrics than the Financial Statistics module. Applications to asset pricing and risk management are also covered.

Big Data in Finance I

Over the past few years, there has been an explosion of interest in the use of large datasets and new empirical techniques to make financial decisions of all kinds. In this elective we examine how the combination of large datasets, empirical techniques including machine learning, and insights from behavioural finance are helping in making more efficient financial decisions. Two areas in which progress has been especially rapid are credit analytics (predicting default in personal loans, mortgages, and firms) and asset management. This elective focuses on these specific markets, considering them from supply, demand, and regulatory perspectives. You will build empirical models to illustrate important concepts throughout the elective.

Big Data in Finance II

Big Data in Finance II builds on and complements insights from Big Data in Finance I. The module will focus on three key techniques in Big Data analysis and machine learning, and their applications to finance. First, we explore unsupervised machine learning models (e.g. clustering algorithms) and their applications to recommendation algorithms in finance. Second, expanding the introductory material on neural networks in Big Data in Finance I, the module will develop this material further to cover Deep Learning techniques, which will then, as in Big Data in Finance I, be applied to credit scoring and/or portfolio choice problems. Third, the module will introduce and discuss reinforcement learning models, with potential applications to portfolio selection and trading strategies.

Blockchain and Crypto Assets

This module is designed to explore the key mechanisms and features of blockchains and distributed ledgers. Students will also learn how to implement business processes and represent traditional financial assets on a distributed platform.

The module will cover core aspects of the technology—cryptography, consensus protocols, peer-to-peer networking—with particular reference to Bitcoin. Enhancements of the Bitcoin core protocol and features of other crypto assets will also be discussed.

A more practical part of the course will feature hands-on sessions on how to implement smart contracts and code business logic on a permissioned blockchain.

The module will make extensive use of demos for a deeper understanding of the platforms and may feature guest speakers. Prior experience in programming is recommended but not required.

Causal Links in Financial Economics

The aim of this module is to introduce tools used to tackle problems related to panel data analysis in empirical finance and economics. Using applications from economics and finance, you will learn to understand and critique research designs and causal claims. The goal is to sharpen your skills as consumers and producers of empirical research in empirical finance. You will learn how to interpret coefficients, how to identify causal mechanism, and how to test for robustness and sensitivity.

Corporate Dealmaking

This module introduces students to those skills by examining the entire deal making process: from the initial stage of identifying a suitable target to undertaking due diligence on it, and from the legal structuring of a transaction to how its terms are both negotiated and then documented. Best practice and common pitfalls to avoid are explored. The module is heavily focused on “how to” make a deal happen.

Corporate Governance and Stewardship

The objective of the module is threefold. First, to give students an introduction to current corporate governance practice. The main issues in corporate governance and stewardship that are discussed among policymakers, corporations, investors and scholars from law, finance and economics will also be covered. The topics will be discussed from an international comparative perspective. Second, to familiarize students with analytical tools used by corporate governance analysts. Third, to illustrate how practical corporate governance and stewardship challenges, like crises, mismanagement or activist shareholder interventions can be addressed and resolved.

The course will introduce some basic economic concepts and tools for analysing the interplay of conflicting interests of management, the board, different types of shareholders and other interested parties; in particular, agency theory and the economics of financial contracting. Empirical tools include event study analyses, regression discontinuity design (RDD) and metrics of firm performance (Q, returns, etc.).

Entrepreneurial Finance

Entrepreneurial Finance (EF) is designed primarily for students who plan to get involved with a new venture at some point in their career -- as a founder, early employee, advisor or investor. The course is also appropriate for students interested in gaining a broader view of the financing landscape for young firms, going beyond the basics of venture capital and angel financing.

EF introduces students to the myriad complexities of evaluating and financing young, high potential ventures, with specific introduction of frameworks, tools, deal terms, and varying sources of capital. Through a combination of lectures, case studies, and mock negotiations, this course will help demystify the fund-raising process by addressing key questions facing all entrepreneurs: When should I raise money? How much? From whom? Under what terms? And what are the longer-term implications of my chosen financing strategy?

Innovation and Strategy in FinTech

Financial technology, also known as FinTech, is an emerging economic industry composed of companies that use technologies such as blockchain, machine learning and AI, to make financial services more efficient, secure and transparent. The FinTech ecosystem includes not only start-up challengers but also incumbent financial institutions seeking to innovate, as well as technology firms entering from outside of the financial industry. This course aims to provide insights into the FinTech revolution, including the nature of the disruption, innovation opportunities and strategic options. We will explore the FinTech landscape, at the same time delve into specific FinTech cases through the case teaching methodology. In this course we will also invite practitioners as guest speakers from varying FinTech sectors to shed light on first-hand industry developments and challenges.

International Finance

Foreign exchange (FX) is not only the most heavily traded of all financial assets, it has the clearest interface between macroeconomics and finance. This elective will introduce you to the main theoretical models used to understand FX markets as well as in-depth analysis of their work.

Mergers and Acquisitions

This elective provides a basic framework for analysing corporate acquisitions, mergers and restructurings in an international setting. You will analyse all the essential elements of the acquisition process.

Machine and Deep Learning with Finance Applications

This module will introduce students to big data analysis using machine learning techniques. Students will utilise machine learning methods to use computational textual analysis and empirical modelling to quantify trends and sentiment in big data.

Private Equity and Venture Capital

This elective allows you to apply key principles of private equity and venture capital to the financing of leveraged buyouts and early-stage ventures. The elective teaches students how to apply what they have learned in class to real life work situations by inviting inspiring speakers to present on campus throughout the module. The guest speakers come from various areas in the industry and discuss how they make transactions in real-life and what their roles entail on a daily basis.

"I have acquired a strong basis of Private Equity & Venture Capital and a comprehensive view on the topic. I learned that it’s not always a matter of technical skills in this field but that the human element is very important." Maria Vittoria Moschini, MSc Finance & Accounting 2018

Real Estate Investment

This elective is an introduction to real estate investment analysis from the perspective of an investor. It emphasises both the teaching of the theory of real estate investment and real estate markets as well as teaching the practical methods and their implementation as used in a modern professional investment context.

Structured Credit and Equity Products

This elective provides an in-depth analysis of credit and equity derivative products. We focus on corporate derivatives and cover the most important products, which serve as building blocks for structuring customised and sophisticated products.

Text Mining for Economics and Finance

This course focusses on methods for quantitatively analyzing text data, such as newspaper articles, social media posts, political speeches, and company product descriptions. The amount and availability of such data is growing rapidly, and extracting valuable information from it is an important challenge. In recent years, numerous machine learning methods have been developed for text. This course will introduce students to these methods, but of equal importance will be to discuss their application to problems in economics and finance.

Wealth Management and Alternative Investments

This elective introduces you to areas of financial planning that are more specific to private wealth management. It will introduce you to the types of client, and their respective investment needs and look at issues such as succession planning and multi-jurisdiction tax planning. Finally it examines the role of alternative investments (hedge funds, real estate and private equity) in building a diversified investment strategy.

Electives available and course outlines are subject to change. Imperial College Business School reserves the right to alter courses whenever they need to be amended or improved. Faculty may also change as and when required.


More Information

Posted on:


Master's programs


London , United Kingdom